Formalising Simple Codecharts

An Abstract Syntax

Jon Nicholson and Aidan Delaney
Visual Modelling Group, University of Brighton

Well-Formed Codecharts

Introduction

Codecharts [1] are a diagrammatic notation for describing
the syntactic relationship between classes in a codebase.
Our work formalises the syntax of a subset of codecharts.

Syntax Represents

A rectangle represents a class, labelled by
a class name.

Class

Set of
Classes

(:gggnat@E§:>

Set of
ignatures

An offset rectangle represents a set of
classes, labelled by a set of class names.

An ellipse represents a method signature,

labelled by a signature name.

An offset ellipse represents a set of method

signatures, labelled by a set of signature
names.

A triangle represents an inheritance class
hierarchy, labelled by a class hierarchy
name.

(root,
a set of classes)

An offset triangle represents a set of inher-
itance class hierarchies, labelled by a set of
class name hierarchies.

Set of class
name hierarchies

R An inverted triangle represents an unary re-
\/ lation, labelled by a unary relation name.

R A single-headed arrow represents a relation-

ship between the source and target, la-
belled by a binary relation name.

R A double-headed arrow represents a pair-

wise relationship between the source and
target, labelled by a binary relation name.

Our work allows us to determine whether a codechart is
syntactically well-formed or non well-formed.

Nicholson & Delaney

We proposed an abstract syntax of codecharts:
(R, To, €, OR, OT:, OE, M, T, A, As)

where R is the set of all class names used to label

rectangles, OR is a set of sets of class names that label
offset rectangles, 7. is the set of class name hierarchies used
to label triangles, 7, captures unary relations and A,
captures binary relations. The other components are
described in the paper.

Animal

[}

Inherit

{WhiteRhino
BlackRhino}

The above example contains a rectangle, an offset rectangle,
a single headed arrow and an inverted triangle. Its abstract
syntax can be captured as follows:

mR = {WhiteRhino,BlackRhino,Animal}

mOR = {{WhiteRhino,BlackRhino}}

n7, = {(Endangered, {WhiteRhino,BlackRhino})}
m A, = {({WhiteRhino,BlackRhino},%s a,Animal)}

(Animal,
{WhiteRhino,
BlackRhino})

The above example contains a triangle. Its abstract syntax
can be captured as follows:

mR = {WhiteRhino,BlackRhino,Animal}
m7.={(Animal, {WhiteRhino,BlackRhino})}

Future work includes a new concrete syntax that facilitates
formal reasoning over how a codechart is drawn.

\ébstrac .R = {7“1, 7’2, 7“3}, Tv — {tl},
Media Y A’ B {al, az}’

m )\, a labelling function where
I@?éiit 12>{z@t

A(7r1) =Media, A(7r2) = Music,
Music Film

A(r3) =Film, A(t,) = Abstract,
A(aq) = Inherit, and
A(az2) = Inherit.

The above codechart contains three labelled rectangles
representing classes, two labelled single headed arrows
specifying that Music and Film both Inherit from
Media, and a labelled inverted triangle specifying that
Media is Abstract. The concrete syntax representation of
this is given on the right, where R is a set of rectangles, T,

is a set of inverted triangles, A, is a set of single headed
arrows, and all other sets are empty.

Non Well-Formed Codecharts

The proposed concrete syntax will allow us to decide when a
codechart is not well-formed, such as below. The first is not
well-formed because getStock does not overlap a rectangle,
the second because the Imherat arrow has no target, and
the third because Abstract overlaps two shapes.

Media

etStock . z
= : 1 nhIéMt bstrac getPrice
getPrice

Media Film

References

[1] A.H. Eden and J. Nicholson.

Codecharts: Roadmaps and Blueprints for

Object-Oriented Programs.
Wiley-Blackwell, April 2011.

Visual Modelling Group, University of Brighton

Formalising Simple Codecharts



