
Formalising Simple Codecharts
Jon Nicholson and Aidan Delaney

Visual Modelling Group, University of Brighton

Introductiony
Codecharts [1] are a diagrammatic notation for describing
the syntactic relationship between classes in a codebase.
Our work formalises the syntax of a subset of codecharts.

Syntax Represents
A rectangle represents a class, labelled by
a class name.

An offset rectangle represents a set of
classes, labelled by a set of class names.

An ellipse represents a method signature,
labelled by a signature name.
An offset ellipse represents a set of method
signatures, labelled by a set of signature
names.
A triangle represents an inheritance class
hierarchy, labelled by a class hierarchy
name.

An offset triangle represents a set of inher-
itance class hierarchies, labelled by a set of
class name hierarchies.

An inverted triangle represents an unary re-
lation, labelled by a unary relation name.

A single-headed arrow represents a relation-
ship between the source and target, la-
belled by a binary relation name.
A double-headed arrow represents a pair-
wise relationship between the source and
target, labelled by a binary relation name.

Our work allows us to determine whether a codechart is
syntactically well-formed or non well-formed.

An Abstract Syntax
We proposed an abstract syntax of codecharts:

(R,T▵,E,OR,OT▵,OE,M,T▿,A▸,A▸▸)

where R is the set of all class names used to label
rectangles, OR is a set of sets of class names that label
offset rectangles, T▵ is the set of class name hierarchies used
to label triangles, T▿ captures unary relations and A▸
captures binary relations. The other components are
described in the paper.

The above example contains a rectangle, an offset rectangle,
a single headed arrow and an inverted triangle. Its abstract
syntax can be captured as follows:

R = {WhiteRhino,BlackRhino,Animal}

OR = {{WhiteRhino,BlackRhino}}

T▿ = {(Endangered,{WhiteRhino,BlackRhino})}

A▸ = {({WhiteRhino,BlackRhino}, is a,Animal)}

The above example contains a triangle. Its abstract syntax
can be captured as follows:

R = {WhiteRhino,BlackRhino,Animal}

T▵ = {(Animal,{WhiteRhino,BlackRhino})}

Well-Formed Codechartsy
Future work includes a new concrete syntax that facilitates
formal reasoning over how a codechart is drawn.

R = {r1, r2, r3}, T▿ = {t1},
A▸ = {a1, a2},

λ, a labelling function where
λ(r1) = Media, λ(r2) = Music,
λ(r3) = Film, λ(t1) =Abstract,
λ(a1) = Inherit, and
λ(a2) = Inherit.

The above codechart contains three labelled rectangles
representing classes, two labelled single headed arrows
specifying that Music and Film both Inherit from
Media, and a labelled inverted triangle specifying that
Media is Abstract. The concrete syntax representation of
this is given on the right, where R is a set of rectangles, T▿
is a set of inverted triangles, A▸ is a set of single headed
arrows, and all other sets are empty.

Non Well-Formed Codecharts
The proposed concrete syntax will allow us to decide when a
codechart is not well-formed, such as below. The first is not
well-formed because getStock does not overlap a rectangle,
the second because the Inherit arrow has no target, and
the third because Abstract overlaps two shapes.

References
[1] A.H. Eden and J. Nicholson.

Codecharts: Roadmaps and Blueprints for
Object-Oriented Programs.
Wiley-Blackwell, April 2011.

Nicholson & Delaney Visual Modelling Group, University of Brighton

Formalising Simple Codecharts


